ํ‹ฐ์Šคํ† ๋ฆฌ ๋ทฐ

ํ˜„์‹ค ๋ฐ์ดํ„ฐ๋ฅผ ๋‹ค๋ฃจ๋‹ค๋ณด๋ฉด ์—ฌ๋Ÿฌ๊ฐ€์ง€ ์˜ํ–ฅ์„ ๋งŽ์ด ๋ฐ›๊ฒŒ ๋ฉ๋‹ˆ๋‹ค. ์‚ฌ๋žŒ์ด ๋ดค์„๋•Œ ์‚ฌ์ง„์ด ์–ด๋‘ก๊ฒŒ ๋˜๋ฉด ๋ฌผ์ฒด๋ฅผ ์‹๋ณ„ํ•˜๊ธฐ ์–ด๋ ต๋“ฏ์ด ๊ธฐ๊ณ„๊ฐ€ ํ•™์Šตํ•  ๋•Œ ์กฐ๋„๋กœ ์ธํ•ด ํ•™์Šต ์„ฑ๋Šฅ์— ์˜ํ–ฅ์„ ์ค„ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค. ํŠนํžˆ, ๋ฌผ์ฒด๋ฅผ ํƒ์ง€ํ•˜๋Š” ๋ชจ๋ธ์ผ ๊ฒฝ์šฐ ์กฐ๋„๊ฐ€ ์–ด๋‘์šด ์‚ฌ์ง„์—์„œ ์‚ฌ๋žŒ์ด๋‚˜ ํŠน์ •ํ•œ ๋ฌผ์ฒด๋ฅผ ์ฐพ์•„๋‚ด๋Š” ๋ฐ ์–ด๋ ค์šธ ์ˆ˜ ์žˆ๊ฒ ์ฃ 

์ด๋Ÿฐ ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์˜ ์กฐ๋„๋ฅผ ์ „์ฒ˜๋ฆฌํ•˜๋Š”๋ฐ ๊ฝค ์–ด๋ ค์šด ์ ์ด ์žˆ์Šต๋‹ˆ๋‹ค. ์‚ฌ์ง„์˜ ์กฐ๋„๋Š” ๊ท ์ผํ•˜์ง€ ์•Š๊ธฐ ๋•Œ๋ฌธ์ด์ฃ . ์ฐฝ๋ฌธ ์ฃผ๋ณ€์€ ๋ฐ์ง€๋งŒ ๋ฌผ์ฒด๋Š” ์–ด๋‘์šธ ์ˆ˜๋„ ์žˆ์–ด ์‚ฌ์ง„ ์ „์ฒด์˜ ๋ฐ๊ธฐ๋ฅผ ์˜ฌ๋ฆฌ๋ฉด ์˜คํžˆ๋ ค ๋ฐ์•˜๋˜ ๋ฌผ์ฒด๋“ค์ด ๋„ˆ๋ฌด ๋ฐ์•„์งˆ ์ˆ˜๋„ ์žˆ์Šต๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ฐ์€ ์˜์—ญ์€ ๊ทธ๋Œ€๋กœ ๋˜๋Š” ์–ด๋‘ก๊ฒŒ, ์–ด๋‘์šด ์˜์—ญ์€ ๋ฐ๊ฒŒ ๋ฐ”๊ฟ”์•ผํ•ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฐ ์ž‘์—…์„ ๋”ฅ๋Ÿฌ๋‹ ๋ชจ๋ธ์„ ํ†ตํ•ด ํ•ด๊ฒฐํ•œ ๋ชจ๋ธ์ด Zero-DCE์ž…๋‹ˆ๋‹ค. ์ด๋ฒˆ ๊ธ€์—์„œ๋Š” Zero-DCE์— ๋Œ€ํ•ด ์„ค๋ช…๋“œ๋ฆฌ๊ฒ ์Šต๋‹ˆ๋‹ค.

 

โญ๏ธ Summary

  • ๋งŽ์€ ์‚ฌ์ง„๋“ค์€ ์ข…์ข… unbalanceํ•œ ์กฐ๋ช… ์กฐ๊ฑด์„ ๊ฐ€์ง€๊ณ  ์žˆ์Œ. ์ด๋กœ ์ธํ•ด ๋ถ€์ •ํ™•ํ•œ ์ •๋ณด๋ฅผ ์–ป๊ฑฐ๋‚˜ ๋งŒ์กฑ์Šค๋Ÿฝ์ง€ ๋ชปํ•œ ํ€„๋ฆฌํ‹ฐ์˜ ์‚ฌ์ง„์„ ์–ป์„ ์ˆ˜ ์žˆ์Œ. ์ด ์—ฐ๊ตฌ๋Š” ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ zero-reference deep curve estimation(Zero-DCE) ๋ชจ๋ธ์„ ํ†ตํ•ด ์–ด๋‘์šด ์ด๋ฏธ์ง€๋ฅผ ๊ฐœ์„ ํ•จ.
  • paired, unpaired data๊ฐ€ ํ•„์š”์—†๋Š” zero-reference ๊ธฐ๋ฒ•์„ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด 4๊ฐœ์˜ loss๋ฅผ ์‚ฌ์šฉํ•จ
  • ์‚ฌ์ง„ ํŽธ์ง‘ ์‹œ ์‚ฌ์šฉ๋˜๋Š” ๊ณก์„  ์กฐ์ •์„ ์ฐธ๊ณ ํ•˜์—ฌ ์ €์กฐ๋„ ์ด๋ฏธ์ง€๋ฅผ ์ž๋™์œผ๋กœ ํ–ฅ์ƒ๋œ ๋ฒ„์ „์œผ๋กœ ๋งคํ•‘ํ•  ์ˆ˜ ์žˆ๋Š” ๊ณก์„ ์„ deep convolutional neural network๋ฅผ ์ด์šฉํ•ด ์„ค๊ณ„ํ•จ

๐Ÿญ Method

  • higher-order curve: ๋ณต์žกํ•œ ์ €์กฐ๋„ ์กฐ๊ฑด์— ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ์Œ
  • pixel-wise curve: ๊ฐ ํ”ฝ์…€์— ๋Œ€ํ•ด ์ตœ์ ์˜ ๊ณก์„ ์„ ์ ์šฉ, ์ง€์—ญ์ ์ธ ํŠน์„ฑ๋„ ๊ณ ๋ คํ•จ

๐Ÿฆ„ Future Works

  • ์˜๋ฏธ๋ก ์  ์ •๋ณด๋ฅผ ์‚ฌ์šฉ: ์ด๋ฏธ์ง€ ๋‚ด์˜ ์‚ฌ๋žŒ, ๋™๋ฌผ, ๋ฌผ์ฒด ๋“ฑ์„ ์‹๋ณ„ํ•ด ๋‹ค๋ฅด๊ฒŒ ์ ์šฉํ•˜๋ฉด ์–ด๋–จ์ง€
  • ๋…ธ์ด์ฆˆ์˜ ์˜ํ–ฅ ๊ณ ๋ ค

 

๐Ÿ”ฅ ๊ธฐ์กด์˜ ๋ฌธ์ œ์ 

  • ๋งŽ์€ ์‚ฌ์ง„๋“ค์€ ์กฐ๋ช…์ด ๋„ˆ๋ฌด ์•ฝํ•˜๊ฑฐ๋‚˜ ์ผ๋ถ€๋งŒ ๋ฐ๊ฒŒ ๋‚˜ํƒ€๋‚˜๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ์„ ์ˆ˜ ์žˆ์Œ
  • ์ด๋กœ ์ธํ•ด ์ •๋ณด๊ฐ€ ๋ถ€์กฑํ•ด์งˆ ์ˆ˜ ์žˆ์œผ๋ฉฐ ๊ฐ์ฒด๋‚˜ ์–ผ๊ตด ์ธ์‹์ด ๋ถ€์ •ํ™•ํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌธ์ œ๋ฅผ ์ดˆ๋ž˜ํ•จ

๊ธฐ์กด ๋ชจ๋ธ๋“ค์˜ ๋ฌธ์ œ์ ๋“ค์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•

  • image-to-image mapping์œผ๋กœ ์ €์กฐ๋„ ์ด๋ฏธ์ง€๋ฅผ ๊ทน๋ณตํ–ˆ์Œ
  • Zero-DCE๋Š” ํ•™์Šต์„ ์œ„ํ•ด paired ๋˜๋Š” unpaired data๊ฐ€ ํ•„์š”ํ•จ
  • CNN ๊ธฐ๋ฐ˜์ด๋‚˜ GAN ๊ธฐ๋ฐ˜์˜ ๋ชจ๋ธ์€ ์–ผ๊ตด ๋ถ€๋ถ„์€ ๋„ˆ๋ฌด ์–ด๋‘ก๊ฒŒ, ์บ๋น„๋‹› ๋ถ€๋ถ„์€ ๋„ˆ๋ฌด ๋ฐ๊ฒŒ ๋งŒ๋“ค์–ด ๋‘˜ ๋‹ค ๋…ธ์ถœ์ด ๋ถˆ๊ท ํ˜•ํ•˜๊ฒŒ ์กฐ์ •๋จ

๊ด€๋ จ ๋…ผ๋ฌธ

  • Conventional Methods
  • Data-Driven Methods

 

๐Ÿ” Method

Curve Light-Enhancement ์กฐ๊ฑด

  • ๊ฐ ํ”ฝ์…€๊ฐ’์„ 0,1 ์‚ฌ์ด๋กœ ์ •๊ทœํ™” ์‹œํ‚ด → overflow๋กœ ์ธํ•œ ์ •๋ณด ์†์‹ค์„ ํ”ผํ•˜๊ธฐ ์œ„ํ•จ
  • ๊ณก์„ ์€ ๋‹จ์กฐ๋กญ๊ฒŒ ์„ค๊ณ„๋˜์–ด์•ผํ•จ → ํ”ฝ์…€๊ฐ„์˜ contrast๋ฅผ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•จ

gradient back propagation ๊ณผ์ •์—์„œ ๋ฏธ๋ถ„ ๊ฐ€๋Šฅํ•ด์•ผ ํ•จ

  • LE(I(x);α): input image์˜ enhance๋œ ๋ฒ„์ „
  • LE-curve๋Š” RGB ์ฑ„๋„ ์„ธ๊ฐœ์— ๊ฐ๊ฐ ๋”ฐ๋กœ ์ ์šฉ๋จ
    • ๋ณธ๋ž˜์˜ ์ƒ‰์ƒ์„ ๋” ์ž˜ ๋ณด์กดํ•˜๊ณ  ๊ณผ๋„ํ•œ ์ฑ„๋„์˜ ์œ„ํ—˜์„ ์ค„์ž„

higher-order curve

  • LE-curve๋ฅผ ์—ฌ๋Ÿฌ๋ฒˆ ๋ฐ˜๋ณต์ ์œผ๋กœ ์ ์šฉํ•  ์ˆ˜ ์žˆ์–ด ์–ด๋ ค์šด ์ €์กฐ๋ช… ์ƒํ™ฉ์— ๋Œ€์‘ํ•  ์ˆ˜ ์žˆ์Œ
  • ๋…ผ๋ฌธ์—์„œ๋Š” 8๋ฒˆ ์ ์šฉํ–ˆ์„ ๋•Œ ๋งŒ์กฑ์Šค๋Ÿฌ์šด ๊ฒฐ๊ณผ๋ฅผ ๋ฐ›์„ ์ˆ˜ ์žˆ์—ˆ์Œ
  • alpha: pixel-wise parameter

Pixel-Wise Curve

  • ๋ณดํ†ต์˜ curve ๊ธฐ๋ฐ˜์˜ ์ด๋ฏธ์ง€ ํ–ฅ์ƒ์˜ ๊ฒฝ์šฐ globalํ•œ ๋งคํ•‘์„ ์ ์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ด๋ฏธ์ง€์˜ ํŠน์ • ์˜์—ญ์ด ๊ณผ๋„ํ•˜๊ฒŒ ํ–ฅ์ƒ๋˜๊ฑฐ๋‚˜ ๋ฏธํ–ฅ์ƒ๋  ์ˆ˜ ์žˆ์Œ → local ์˜์—ญ๋„ ๋งคํ•‘ํ•  ์ˆ˜ ์žˆ์–ด์•ผ ํ•จ
  • A: parameter map์„ ์ ์šฉํ•จ

๊ทธ ๊ฒฐ๊ณผ ๊ฐ’์˜ ๋‹จ์กฐ ๊ด€๊ณ„๊ฐ€ ์—ฌ์ „ํžˆ ์œ ์ง€๋  ์ˆ˜ ์žˆ์Œ

  • ์œ„ ๊ทธ๋ฆผ์€ 3๊ฐœ์˜ ์ฑ„๋„์— ์ตœ์ ํ™”๋œ parameter map์„ ๋ณด์—ฌ์คŒ
  • ์ด map์œผ๋กœ ํ”ฝ์…€๋ณ„ curve mapping์„ ํ†ตํ•ด ํ–ฅ์ƒ๋œ ์ด๋ฏธ์ง€๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Œ
  • ์ฆ‰, ๋ฐ์€ ์˜์—ญ์€ ์œ ์ง€ํ•˜๋ฉฐ ์–ด๋‘์šด ์˜์—ญ์€ ๋ฐ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ

DCE-Net

  • input image์™€ ๊ฐ€์žฅ ์ ํ•ฉํ•œ curve parameter map์„ fitํ•˜๋„๋ก ํ•™์Šตํ•จ
  • input: ์ €์กฐ๋„ ์ด๋ฏธ์ง€, output: curve
  • model
    • 7๊ฐœ์˜ convolution layer๋ฅผ ๊ฐ–์ถ˜ CNN, kernel size 3x3, stride 1,
    • ReLU activation function
    • ์ธ์ ‘ ํ”ฝ์…€์˜ ๊ด€๊ณ„๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด down-sampling, batch normalization ์ ์šฉ
    • ๋งˆ์ง€๋ง‰ convolutional layer์— Tanh activation function

Non-Reference Loss Functions

  • zero-reference learning์„ ์œ„ํ•ด 4๊ฐœ์˜ non-reference loss๋ฅผ ์‚ฌ์šฉํ•จ
    • ํ–ฅ์ƒ๋œ ์ด๋ฏธ์ง€ ํ’ˆ์งˆ์„ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•œ ๋ฐฉ๋ฒ•์ž„

Spatial Consistency Loss

  • ์ด์›ƒ๋œ ์˜์—ญ์˜ ์ฐจ์ด ๋น„๊ต
  • K: local region ๊ฐฏ์ˆ˜ → local region์„ 4x4๋กœ ์ง€์ •ํ•จ
  • ์˜ค๋ฉ”๊ฐ€: i๋ฅผ ์ค‘์‹ฌ์œผ๋กœ 4๊ฐœ์˜ ์ด์›ƒ๋œ ์˜์—ญ(top, down, left, right)
  • Y: ํ–ฅ์ƒ๋œ ์ด๋ฏธ์ง€์˜ local region ํ‰๊ท  ๊ฐ•๋„
  • I: ์›๋ณธ ์ด๋ฏธ์ง€์˜ local region ํ‰๊ท  ๊ฐ•๋„

Exposure Control Loss

  • ๋…ธ์ถœ์ด ๊ณผ๋„ํ•˜๊ฒŒ ๋งŽ๊ฑฐ๋‚˜ ๋ถ€์กฑํ•œ ์˜์—ญ์„ ์ œํ•œํ•˜๊ธฐ ์œ„ํ•œ ๋ชฉ์  ํ•จ์ˆ˜
  • local region์˜ ํ‰๊ท  ๊ฐ•๋„ ๊ฐ’๊ณผ ์ž˜ ๋…ธ์ถœ๋œ ์ˆ˜์ค€ E ์‚ฌ์ด์˜ ๊ฑฐ๋ฆฌ๋ฅผ ์ธก์ •ํ•จ
  • E๋Š” RGB ์ปฌ๋Ÿฌ ๊ณต๊ฐ„์—์„œ ํšŒ์ƒ‰ ์ˆ˜์ค€์„ E๋กœ ์„ค์ •ํ•œ๋А ๋ฐฉ๋ฒ•์„ ํ™œ์šฉ
    • 0.6์œผ๋กœ ์„ค์ •ํ•จ(0.4-0.7) ๋ฒ”์œ„ ๋‚ด์—์„œ๋Š” ๋น„์Šทํ•œ ์„ฑ๋Šฅ์„ ๋ณด์ž„
  • M: overlap ๋˜์ง€ ์•Š๋Š” local regions(16 x 16)์˜ ์ˆ˜

Color Constancy Loss

  • ํ–ฅ์ƒ๋œ ์ด๋ฏธ์ง€์—์„œ ์ƒ‰์ƒ์ด ์ผ๊ด€๋˜๊ฒŒ ์œ ์ง€๋˜๋„๋ก ํ•˜๋Š” ๋ชฉ์ ํ•จ์ˆ˜
  • ๋‹ค๋ฅธ ์ฑ„๋„๊ฐ„์˜ ํ‰๊ท  ๊ฐ•๋„ ๊ฐ’์˜ ์ฐจ์ด๋ฅผ ์ตœ์†Œํ™”ํ•˜์—ฌ ์ „์ฒด ์ด๋ฏธ์ง€์—์„œ ์ƒ‰์ƒ ์ผ๊ด€์„ฑ์„ ์œ ์ง€ํ•จ
  • ์•ฑ์‹ค๋ก : RGB ์ฑ„๋„ ์Œ์˜ ์ง‘ํ•ฉ
  • J: ํ–ฅ์ƒ๋œ ์ด๋ฏธ์ง€์—์„œ p ์ฑ„๋„์˜ ํ‰๊ท  ๊ฐ•๋„ ๊ฐ’

Illumination Smoothness Loss

  • ์ธ์ ํ•œ ํ”ฝ์…€ ์‚ฌ์ด์˜ ๋‹จ์กฐ ๊ด€๊ณ„๋ฅผ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•œ ๋ชฉ์  ํ•จ์ˆ˜
  • A: n๋ฒˆ์งธ์˜ c ์ฑ„๋„์˜ parameter map
  • delta: x์™€ y ๋ฐฉํ–ฅ์œผ๋กœ์˜ ๊ธฐ์šธ๊ธฐ → ์ˆ˜์ง, ์ˆ˜ํ‰ ๋ฐฉํ–ฅ์˜ ๊ธฐ์šธ๊ธฐ
    • ๊ธฐ์šธ๊ธฐ๋“ค์˜ ํ•ฉ: ์กฐ๋ช…์˜ ๋ณ€ํ™”๋ฅผ ์ธก์ •ํ•จ

Total Loss

๐Ÿงช Experiments

  • ์‚ฌ์šฉํ•œ ๋ฐ์ดํ„ฐ์…‹: SICE dataset(3,022์žฅ, 2,422์žฅ-train, 600์žฅ-validation)
  • image resize shape: 512x512
  • batch size: 8
  • ๊ฐ layer์˜ filter๋Š” standard zero mean๊ณผ 0.02 standard deviation gaussian function์œผ๋กœ ์ดˆ๊ธฐํ™”ํ•จ
  • ADAM optimizer ํ™œ์šฉ
  • learning rate: 0.0001

Ablation Study

Contribution of Each Loss

  • ์œ„ ๊ทธ๋ฆผ์€ ๊ฐ๊ฐ loss๊ฐ€ ์—†์„ ๋•Œ์˜ ๊ฒฐ๊ณผ๋ฅผ ๋ณด์—ฌ์คŒ
    • spatial consistency loss๊ฐ€ ์—†์„ ๊ฒฝ์šฐ ์ธ์ ‘ํ•œ ์˜์—ญ๋“ค์˜ ์ฐจ์ด๊ฐ€ ์œ ์ง€๋˜์ง€ ์•Š์Œ
    • exposure control loss๊ฐ€ ์—†์„ ๊ฒฝ์šฐ ๋‚ฎ์€ ๋ฐ๊ธฐ์˜ ์˜์—ญ์ด ํ–ฅ์ƒ๋˜์ง€ ์•Š์Œ
    • color consistency loss๊ฐ€ ์—†์„ ๊ฒฝ์šฐ ์ƒ‰๋ณ€ํ˜•์ด ์ƒ๊น€
    • illumination smoothness loss๊ฐ€ ์—†์„ ๊ฒฝ์šฐ ์ธ์ ‘ํ•œ ์˜์—ญ๊ฐ„์˜ ์ƒ๊ด€๊ด€๊ณ„๊ฐ€ ๋–จ์–ด์ ธ artifact๊ฐ€ ๋ฐœ์ƒํ•จ

Effect of Parameter Settings

parameter ์‹คํ—˜ ๊ฒฐ๊ณผ

Impact of Training Data

ํ•™์Šต๋ฐ์ดํ„ฐ impact๋ฅผ ํ…Œ์ŠคํŠธํ•˜๊ธฐ ์œ„ํ•ด ์—ฌ๋Ÿฌ๊ฐ€์ง€ ๋ฐ์ดํ„ฐ์…‹์„ ์ด์šฉํ•ด ์‹คํ—˜ํ•จ

  • Low: 900๊ฐœ์˜ low-light image
  • LargeL: DARK FACE dataset 9000๊ฐœ์˜ unlabeled low-light images
  • LarghLH: 4800๊ฐœ์˜ ๋‹ค์–‘ํ•œ ๋…ธ์ถœ ์ด๋ฏธ์ง€

 

์ด๋ฅผ ํ†ตํ•ด, ๋‹ค์–‘ํ•œ ๋…ธ์ถœ์ด ์žˆ๋Š” ํ•™์Šต ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•ด์•ผํ•˜๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ์Œ

๐Ÿ—’๏ธ Benchmark Evaluations

  • SOTA ๋ชจ๋ธ๊ณผ ์ •๋Ÿ‰์ , ์ •์„ฑ์  ์‹คํ—˜์„ ํ†ตํ•ด ์„ฑ๋Šฅ์„ ๋น„๊ตํ•จ
    • 3๊ฐœ์˜ conventional methods: SRIE, LIME
    • 2๊ฐœ์˜ CNN-based methods: RetinexNet
    • 1๊ฐœ์˜ GAN-based method: Enlighten-GAN

Visual and Perceptual Comparisons

  • ์•„๋ž˜์˜ ๊ธฐ์ค€์œผ๋กœ 1๋ถ€ํ„ฐ 5๊นŒ์ง€ ์ ์ˆ˜ํ™”ํ•จ
    • ๊ณผ๋‹ค, ๊ณผ์†Œ ๋…ธ์ถœ๋˜๋Š” artifacts ๋˜๋Š” region์ด ์žˆ๋Š”์ง€
    • ๊ฒฐ๊ณผ ์ƒ‰์ƒ์ด ์–ด๊ธ‹๋‚˜๋Š”์ง€
    • ์ž์—ฐ์Šค๋Ÿฝ์ง€ ์•Š์€ ํ…์Šค์ฒ˜๋‚˜ ๋…ธ์ด์ฆˆ๊ฐ€ ์žˆ๋Š”์ง€

  • NPE, LIME, MEF, DICM, VV: ๋ฐ์ดํ„ฐ์…‹
  • User Study๊ฐ€ ๋†’์„์ˆ˜๋ก/Perceptual index๊ฐ€ ๋‚ฎ์„์ˆ˜๋ก ์ข‹์€ ๊ฒฐ๊ณผ๋ฅผ ๋‚˜ํƒ€๋ƒ„
  • ๊ทธ ๊ฒฐ๊ณผ Zero-DCE๊ฐ€ ๊ฐ€์žฅ ์ข‹์€ ์„ฑ๋Šฅ์˜ user study score, PI score๋ฅผ ๋ณด์ž„

Quantitative Comparisons

Peak Signal-to-Noise Ratio(PSNR,dB), Structural Similarity (SSIM), MAE๋กœ ์„ฑ๋Šฅ์„ ์ธก์ •ํ•จ. ๋นจ๊ฐ„์ƒ‰์ด ๊ฐ€์žฅ ์ข‹์€ ๊ฒฐ๊ณผ, ํŒŒ๋ž€์ƒ‰์ด ๋‘๋ฒˆ์งธ ์ข‹์€ ๊ฒฐ๊ณผ

runtime ์ธก์ • ๊ฒฐ๊ณผ. best: Zero-DCE, 2nd best: EnlightenGAN

Face Detection in the Dark

์–ด๋‘์šด ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•ด face detection ์‹คํ—˜์œผ๋กœ ์ €์กฐ๋„ ์ด๋ฏธ์ง€์˜ ํ–ฅ์ƒ๋œ ๋ฒ„์ „์„ ํ™•์ธํ•จ

  • ํ–ฅ์ƒ๋œ ์ด๋ฏธ์ง€์˜ ๊ฒฝ์šฐ detectํ•œ face์˜ ์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ–ˆ์Œ

๐Ÿง Conclusion

  • ์ €์กฐ๋„ ์ด๋ฏธ์ง€ ๊ฐœ์„ ์„ ์œ„ํ•œ deep neural network๋ฅผ ์ œ์•ˆํ•จ
  • zero reference์˜ end-to-end ๋ชจ๋ธ์„ ํ›ˆ๋ จํ•  ์ˆ˜ ์žˆ์Œ
  • ๊ธฐ์กด์˜ ์กฐ๋„ ๊ฐœ์„  ๋ฐฉ๋ฒ•๋“ค์— ๋น„ํ•ด ์„ฑ๋Šฅ์ด ํ–ฅ์ƒ๋œ ๊ฒƒ์„ ํ™•์ธํ•จ
  • ํ–ฅํ›„, ์˜๋ฏธ๋ก ์  ์ •๋ณด๋ฅผ ๋„์ž…ํ•˜๊ณ  ๋…ธ์ด์ฆˆ์˜ ์˜ํ–ฅ์„ ๊ณ ๋ คํ•  ์˜ˆ์ •

Outro.

zero-dce์˜ ๊ฐ€์žฅ ํฐ ์žฅ์ ์€ reference๊ฐ€ ์—†๋Š” ๊ฒƒ์ด๋ผ๊ณ  ์ƒ๊ฐํ•ฉ๋‹ˆ๋‹ค. ๊ฐ„๋‹จํ•œ convolution layer๋กœ๋งŒ๋„ ์ด๋Ÿฐ ๊ฒฐ๊ณผ๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๋Š” ๊ฒƒ ๋˜ํ•œ ์†๋„ ์ธก๋ฉด์—์„œ๋„ ์ข‹์„ ๊ฒƒ ๊ฐ™์•„์š”. ๋‹ค๋งŒ, ์–ผ๊ตด ๋ฐ์ดํ„ฐ์— ํ™œ์šฉํ•ด๋ดค์„๋•Œ ์•„์‰ฝ๊ฒŒ๋„ ์•ฝ๊ฐ„ ๋…ธ๋ž€์ƒ‰์œผ๋กœ ๋ณ€ํ•˜๊ณ  ๋ฟŒ์–˜์ง€๋Š” ์„ฑํ–ฅ์ด ์žˆ์—ˆ์Šต๋‹ˆ๋‹ค. ํ•˜๋‚˜์˜ ๋ฌผ์ฒด๊ฐ€ ์‚ฌ์ง„์— ์ฐจ์ง€ํ•˜๋Š” ๋น„์œจ์ด ํฌ๋‹ค๋ฉด ์กฐ๊ธˆ ๊ณ ๋ คํ•ด๋ด์•ผ๊ฒ ์ง€๋งŒ ๋„๋กœ๋‚˜ ํ’๊ฒฝ ์‚ฌ์ง„๋“ค์€ ๊ฝค ๋งŒ์กฑ์Šค๋Ÿฌ์šด ์„ฑ๋Šฅ์„ ๋ณด์ด์ง€ ์•Š์„๊นŒ์š”? ์ง€๊ธˆ๊นŒ์ง€ ์ฝ์–ด์ฃผ์…”์„œ ๊ฐ์‚ฌํ•ฉ๋‹ˆ๋‹ค! ๐Ÿซง

์ตœ๊ทผ์— ์˜ฌ๋ผ์˜จ ๊ธ€
ยซ   2025/06   ยป
์ผ ์›” ํ™” ์ˆ˜ ๋ชฉ ๊ธˆ ํ† 
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30
Total
Today
Yesterday